1 Math 1 HW \#1

1. In this problem we calculate Fourier series for two different 2π-periodic functions. Each will give us an infinite series for calculating π.
(a) Let f be the 2π-periodic function defined by $f(x)=x$ for $-\pi \leq x \leq \pi$. Calculate the Fourier sine series for f. Evaluate this series at $x=\pi / 2$ to obtain the approximation

$$
\pi=4-\frac{4}{3}+\frac{4}{5}-\frac{4}{7}+\frac{4}{9}-\ldots
$$

(b) Let g be the 2π-periodic function defined by $g(x)=|x|$ for $-\pi \leq x \leq \pi$. Calculate the Fourier cosine series for g. Evaluate this series at $x=0$ to obtain the approximation

$$
\pi=\sqrt{8\left(1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\frac{1}{9^{2}}+\ldots\right)}
$$

(c) How many terms do you need in each series to get a correct 4-decimal place approximation?
2. Calculate a complex exponential Fourier series for the 1-periodic function defined by

$$
h(x)= \begin{cases}x^{2} & \text { if } 0 \leq x<\frac{1}{2} \\ 0 & \text { if } \frac{1}{2} \leq x<1\end{cases}
$$

3. (a) Define $f(x)$ to be the 1-periodic function given by $f(x)=x^{-1 / 4}$ for $0 \leq x<1$. Calculate $\|f\|_{2}$.
(b) For a real number c, define define $f_{c}(x)$ to be the 1-periodic function given by $f_{c}(x)=x^{c}$ for $0 \leq x<1$. For what values of c is $\left\|f_{c}\right\|_{2}<\infty$?

